TDA Progress Report 42-86

April —June 1986

Fast Magnetic Tape Utilities for VAX/VMS Computers

N. E. Olson, R. F. Jurgens, and J. L. Robinett

Communications Systems Research Section

A package of subroutines for VAX/VMS computers has been developed to simplify the
use of the QIO (Queued Input/Qutput) interface with magnetic tape drives. Routines are
provided to perform dll of the most common tape functions.

|. Introduction

As part of the standard software for their VAX/VMS com-
puters, the Digital Equipment Corporation provides the
SYS$QIO and SYS$QIOW routines to enable a program to
request low-level operations on many I/O devices. Unfortu-
nately, because of the general nature of these routines, the
parameters they demand are often much more complex than
would be necessary for simple operations such as rewinding a
magnetic tape drive. In addition, there are several confusing
deviations from the standard methods of argument binding. In
order to decrease the frequency of programming errors and
improve programmer productivity, we have written MTU-
TILS, a package of magnetic tape utilities which provide most
of the flexibility of the QIO interface for tape operations with
a maximum of simplicity. These routines use only the standard
FORTRAN and Pascal methods of argument binding and have
comparatively simple argument lists.

Table 1 contains a summary of the major routines. In addi-
tion to the source code for the routines, the package includes
a help file for use with the VAX/VMS on-line help facility,
a command procedure to build and install the software, and a
FORTRAN include-file and a Pascal environment file to define
the structures used by the package.

294

The routines can be divided into two groups: one which
provides basic tape operations, and one which allows certain
operations to be performed on a “list of tape drives.” This last
group is meant for use with datasets which are too large to be
stored on a single magnetic tape. It allows the programmer to
define a sequence of tape drives which will be written or read
in cyclic order, the next drive in the sequence being auto-
matically engaged when the current drive encounters the end
of its tape.

ll. Usage

The actual caller interface for each routine is listed in the
appendix. Below is a description of the sample FORTRAN
program shown in Fig. 1. It uses the MTUTILS package to
write a record to tape. The file “MTUTILS. ICL” is the
include-file which must be included in all FORTRAN routines
that use the MTUTILS package. Note the variable called DSCR
in the variable declaration section. It is a descriptor block
filled by the INIT_UNIT routine and used by the other rou-
tines to store information about the tape unit. The first thing
the program does is enable the diagnostics, These are informa-
tional and error messages which, if requested, are written to
the logical file name FORSPRINT. After getting the user’s

input, the program calls the TRANSLATE_DENSITY routine
to translate the density in bytes per inch into the density code
required by INIT_UNIT. As with most of the routines, an
error flag is returned indicating whether its function was
successfully performed. If this flag is set, the main program
can call several status-checking routines to obtain more de-
tailed information about the error.

Next, the program calls INIT_UNIT, which performs
several functions such as mounting and allocating the drive and
assigning it a channel, as well as filling the descriptor. Now
that the descriptor has been filled, it can be passed to the
other routines which perform the following functions: read a
record, write a record, write an End-Of-File mark, rewind the
tape drive, skip files (forward or reverse), skip records (for-
ward or reverse), search for the End-Of-Volume mark, or
release the unit. (For a list of tape units, as opposed to a single

unit, the following exceptions apply: rewind cannot be done,

and neither files nor records can be skipped in the reverse
direction.) Also provided are routines that will make asyn-
chronous requests to read a record, write a record or rewind a
tape drive. After making such a request, the program can
proceed to do some computation, and when it needs to know
that the request has been satisfied, it can call the WAIT-
READY routine, which waits until this occurs.

Finally, the sample program writes the record to tape,
prints out a message to that effect, and calls RELEASE_UNIT
to perform clean-up functions such as dismounting and deallo-
cating the unit, with the option specified to automatically
unload the tape as well.

The program does not take measures to recover from
errors, but the MTUTILS package provides several facilities

to do so. In addition to requesting diagnostic messages, the
program can obtain status flags and other data concerning
the tape drive. For example, in the sample program, the
length of the last record read or written is retrieved using the
GET_LENGTH function. In case of more obscure error
conditions, the program can get the actual system status
word from the most recent system service call by using the
GET_STATUS function. The most commonly checked flags
are included as parameters to the relevant routines (e.g.,
WRITE_TAPE automatically returns an end-of-tape flag).
The help file which comes with the package contains complete
details about all of the routines.

lll. Performance

The read and write routines have been timed with a TU-78
tape drive. The following formulas give a good estimate of the
time needed to read or write a record of L bytes on a lightly
loaded VAX for the particular tape drive on which the rou-
tines were timed (these times, of course, will be too optimis-
tic for a heavily loaded VAX). TU.78 tape drives can operate
at a density of either 1600 or 6250 bytes per inch (bpi). At
1600 bpi, the time in milliseconds per record is given by:

T=0.00537L +13.3
At 6250 bpi, the time is given by:
T=0.00138L +10.7

These figures indicate a burst rate of about 116 inches per
second (ips) for our tape drive. The nominal rate for TU-78
drives is 125 ips.

295

Table 1. Summary of the major routines?

Versions Included

Operation” For single tape drives For a list of tape drives
Synchronous Asynchronous Synchronous Asynchronous
Initialize unit X X
Release unit X X
Read record X X X X
Write record X X X X
Write EOF mark X X
Rewind X X
Skip files forward X X
Skip files reverse X
Skip records forward X X
Skip records reverse X
Search for EOV mark X X
Wait for completion X X

(of asynchronous
request)

2gee the appendix for a complete list including status tests, etc.
bEQF means End Of File; EOV means End Of Volume.

296

40 A A I H G S 2O I 2 A B0 B H IR R 6 H A B B A H 00 B TS 0 H 0 B SR R SR
This program writes a record of zeroes as the first record on a
tape. The user specifies the record length, the name of the
tape drive and the tape density.

If a tape error occurs, an error message is printed and the
program halts.

This program is not bullet-proof, e.g. the record length is not
tested to be within bounds. This allows the vser to force some
error messages out of the MTUTILES diasgnostic facility.

A4 A A A 3T A B 6N B 0 FEAE A 635 A 36 360 3 364 A0 B3 B IE AR 63 6 3036 SR A 30T IS 606 2 A6 4 3R B A 2

% 0k ok k & K %k % % %
ok ok ok ok ok ok ok %

INCLUDE 'MTUTILS. ICL’ 'This propgram uvses the MTUTILS package
PARAMETER (MAX_RECORD_LEN = &45535)

LOGICAL ERRDOR_FLAG, EOT_FLAG 'EOT = End Of Tape

INTEGER DENSITY

INTEGER FORMAT

DATA FORMAT /0/ !Flag to use the default tape format
INTEGER LENGTH

BYTE BUFFER{MAX_RECORD_L.EN)

DATA BUFFER /48539#0/ !Tnitialize BUFFER to all zervoes
CHARACTER#10 TAPE ! Name of the desired tape drive
RECORD /TAPE_DSCR/ DSCR !Declare a tape descriptor

C Enable printing of diagnostic and error messages
C (DIAGS is a constant defined in the INCLUDE file)

CALL BET_DIAGNOSTICS(DIAGS)?
C Get the user’s specifications

WRITE(#, #), ‘Enter the length of the record to be written (in bytes): ’
READ(#, #), LENGTH

WRITE(#, #), ‘Enter the name of the desired tape unit:
READ (%, 10), TAPE
10 FORMAT(A10)

WRITE(#, #), ’Enter the desired tape density (bpi):
READ(#, #), DENSITY

C Translate the density in bytes per inch into & tape density code

CALL TRANSLATE_DENSITY (DENSITY,ERROR_FLAG)
IF (ERROR_FLAG) STOP !Diagnostics have already been printed

C Initialize the unit

CALL INIT_UNIT (TAPE, DENSITY.FORMAT, DSCR, ERROR_FLAG)
IF (ERROR_FLAG) STOP !Diagnostics have already been printed

C. Write the record

CALL WRITE_TAPE (DBCR, LENGTH, BUFFER, RETRY, EOT_FLAG, ERROR_FLAG)
IF (ERROR_FLAG) BTOP !Diagnostics have already been printed

C Print out the length of the last record written
WRITE(#, #):, ‘A record of length ’, GET_LENGTH(DSCR)
WRITE(#, #), ‘has been written, / :
IF (EOT_FLAG) WRITE(#,#), ‘The end of the tape was reached. ’

€ Release the unit and unload the tape

CALL RELEASE_UNIT (DSCR,UNLOAD, ERROR_FLAG)
IF (ERROR_FLAG) SBTOP !Diagnostics have already been printed

END

Fig. 1. Sample program

297

298

Appendix |
Summary of FORTRAN Routines

A summary of the FORTRAN caller interfaces to each of the routines in the package
is provided in this appendix.

Routines with plural names (e.g. INIT_UNITS and READ_TAPES) and

those whose names begin with "LIST_" are for a3 list of tape units

Others apply to single tape units. Routines whose names begin

with a "Q" perform asynchronous requests.

After

the list of routines is a description of their parametbers

Initialization and release:

Call
CALL
CaLL
cAaLL
catL

calL

Reads
Call.
CALL
caLL
CaLL
cALL
CALL
CALL
CaLl
CALL

CALL

TRANSLATE_DENSITY{(DENSITY, ERROR_FLAG)
SET_DIAGNOSTICE(DIAG_FLAG)
INIT_UNIT(NAME, DENSITY, FORMAT, DGCR, ERROR_FLAG)

INIT_UNITS (MUMUNITS, NGMES, DENSITY: FORMAT, DLIST, ERROR_FLAR)
RELEASE _UNIT{(DSCR, UNLDAD_FLAG: ERROR_FLAZ)

RELEASE _UNITS(DLIST, UNLDOAD _FLAG, ERROR_FLAG)

and Writes:

QREAD_TAPE(DSCR.BYTEWCUUNT.BUFFER.RETRY_FLAG‘ERRDR_FLAG)
QREAD_TAPES{DLIST, BYTE_COUNT. BUFFER, SWAFNUM, RETRY_FLAG, ERROR_FLAG)
READ_TAPE(DSCR, BYTE_COUNT, BUFFER, RETRY_FLAG, EOV_FLAG, ERROR_FLAG)
READ_TAPES(DL.IST, BYTE_COUNT, BUFFER, SWAPNUM, RETRY_FLAG, EOV_FLAG, ERROR_FLAG)
GNRITE*TAPE(DSCR,BYTE_CDUNT:BUFFER.RETRY_FLAG;ERRDR_FﬂAG)
QWRITE_TAPES(DLIST, BYTE_COUNT, BUFFER, SWAPNUM, RETRY_FLAG, ERROR_FLAG)
WRITE_TAPE{(DSCR, BYTE_CQUNT, BUFFER, RETRY_FLAR, EDT_FLAG, ERROR_FLAG)
NRITE_TAPEB(DLIST{BYTE_CDUNT,BUFFER.SNAPNUM.RETRY_FLAG;ERRDR~FLAG)
WRITE_EOF (DICR, ERROR_FL.AG)

LIST_WRITE_EOF (DLIST, SWAPNUM, ERROR_FLAG)

Skipping and Searching:

CALL GREWIND(DSCR,UNLDAD_FLAG.ER&DR“FLAG)

CALL REWIND{(DSCR. UNLOAD_FLAG, ERROR_FLAG)

CALL SKIP_FILES(DSCR.: COUNT, ERROR_FLAG)

CALL LIST_SKIP_FILES(DLIST, COUNT, SWAPNUM, ERROR_FLAG)
CALL SWKIP_RECORDS (DSCR: COUNT, ERROR_FLAG)

CALL LIST_SKIP_RECORDS(DLIST. COUNT, SWAPNUM, ERROR_FLAG)
CALL SEARCH_EOV(DBCR, EDT_FLAG, ERROR_FLAG)

CALL LIST_SEARCH_EOV(DLIST, EQT_FLAG, SWAPNUM, ERROR_FL.AG)
Synchronizers:
CALL WAITREADY(DSCR. ERROR_FLAG)

CALL LIST_WAITREADY(DLIST, BWAPNUM, ERROR_FLAG)

Routines to extract extra information and error conditions:

LENGTH = GET_LENGTH(DSCR) LENGTH = LIST_GET_LENGTH(DLIST)
STATUS = GET_STATUS(DSCR) STATUS = LIST_GET_STATUS(DLIST)
BOT_FLAG = TEST_BOT(DSCR) BOT _FLAG = LIST_TEST _BOT(DLIST)
EOF_FLAG = TEST_EOQF(DSCR) EOQOF _FILLAG = LIST _TEST_EOQF(DLIBT)
EOT_FLAG = TEST_EOT(DSCR) EQT_FLAG = LIST_TEST_EOT(DLIST)
EOV_FLAG = TEST_EOV(DSCR) _EDVwFLAG = LIST_TEST _EOVI(DLIST)
HUWL._FLAG TEST_HWL.{DSCR) : HWL._FLAG = LIST_TEST_HWL(DLIST)

Sl

LOST_FLAG = TEST_LOST(DSCR) LOST_FLAG = LIST_TEST_LOST(DLIST)
PAR_ERR_FLAG = TEST_PAR_ERR(DSCR)

PAR_ERR_FLAG = LIST_TEST_PAR_ERR (DLIST)

a CURRENT_DRIVE = GET_UNIT_NUM(DLIST)

CaALL ERROR_CHECK (DSCR, BOT_FLAG, EOF _FLAG, EOT_FLAG, HWL._FLAG,
LOST_FLAG: PAR_ERR_FLAG)

CALL LIST_ERROR_CHECK(DLIST, BOT_FLAG. EOF_FLAG, EOT_FLAG, HWL._FLAG,

LOST_FLAG, PAR_ERR_FLAG)

299

300

Below is a table explaining the parameters used in this package.

Note:

Non-standard types such as "word” and “TAPE_LIST" are defined

in the include #ile (for FORTRAN) or the environment file (for Pascal)

Parameter FORTRAN type
BOT_FLAG LOSICAL

BUFFER BYTE or INTEGER
BYTE_COUNT INTEGER*2

COUNT INTEGER#2
DENSITY INTEGER
DIAG_FLAG LOGICAL

DLIST RECORD/TAPE_L.18T/
DSCR RECORD/TAPE_DSCR/
EQOF_FLAG LOGICAL
EOT_FLAG LOGICAL
EQV_FLAG LOGICAL
ERROR_FLAG LOGICAL

FORMAT INTEGER
HWL_FLAG LOGICAL
LOBT_FLAG LOGICAL

NAME CHARACTER®#L.
NAMES CHARACTER¥*L (N)
NUMUNITS INTEGER
PAR_ERR_FLAG LOGICAL
RETRY_FLAG LOGICAL.

SWAFNUM INTEGER
UNLDAD_FLAG LOGICAL

Pascal type

Description

bpolean Beginning Of Tape

integer Data record buffer

word‘ Léngth of fecnrd

word Number of records or files
integer Tape density

boolean Controls diagnostic messages
Tapelist List of descriptors
TapeDscr Tape descriptor

boolean End Of File

boolean End Of Tape

boolean End Of Volume

boolean Error

integer Tape format

boolean Hardware Write Lock
boolean Tape position Lost

packed array
of char

array of Name

l.ogical name of tape unit

List of logical unit names

integer Length of name-list

boolean Pariﬁg Error

boolean Controls autpmatic error-retry
integer If non~zevro, tape to swap#
boolean. Controls unloading of tape

+ pNumber aof the tape unit in a
be swapped for the next tape
by the list-of-tape vroutines

operator when tape swaps are

tape list which has reached EDT and needs to
in the volume set. This value is returned
so that the calling program can alert the

necessary

